一、Data Structure (50%)
1. (20%) Let $S_n$ be the expected number of comparison in a successful search of a randomly constructed n-node binary tree, and let $U_n$ be the expected number of comparisons in an unsuccessful search. We assume that $H_n$ is the n-th harmonic number. Please represent $S_n$ and $U_n$ respectively using harmonic number.
參考解答:
2. (30%) For the AOE (Activity on Edge) network described by the table, (a) What is the earliest time the project can finish? (b) Please list all critical paths. Note that state 1 is the starting state and state 10 is the goal state.
Activity | From state | To state | Time |
$a_1$ | 1 | 2 | 5 |
$a_2$ | 1 | 3 | 5 |
$a_3$ | 2 | 4 | 3 |
$a_4$ | 3 | 4 | 6 |
$a_5$ | 3 | 5 | 3 |
$a_6$ | 4 | 6 | 4 |
$a_7$ | 4 | 7 | 4 |
$a_8$ | 4 | 5 | 3 |
$a_9$ | 5 | 7 | 1 |
$a_{10}$ | 5 | 8 | 4 |
$a_{11}$ | 6 | 10 | 4 |
$a_{12}$ | 7 | 9 | 5 |
$a_{13}$ | 8 | 9 | 2 |
$a_{14}$ | 9 | 10 | 2 |
參考解答:
(a) 22
(b)
1: $a_2 \rightarrow a_4 \rightarrow a_8 \rightarrow a_9 \rightarrow a_{12} \rightarrow a_{14}$
2: $a_2 \rightarrow a_4 \rightarrow a_8 \rightarrow a_{10} \rightarrow a_{13} \rightarrow a_{14}$
3: $a_2 \rightarrow a_4 \rightarrow a_7 \rightarrow a_{12} \rightarrow a_{14}$
二、Algorithms (50%)
1. (20%) Solving the recurrence $T(n) = 2T(n/4) + \sqrt{n}$ using $\Theta$ notation.
參考解答:$\Theta (\sqrt{n} lgn)$
2. (20%) The incident matrix of a directed graph $G=(V,E)$ with no self-loops is a $|V| \times |E|$ matrix $B = (b_{ij})$ such that
$$
\begin{equation}
b_{ij} =
\begin{cases}
-1 & \text{if edge $j$ leaves vertex $i$}\\
1 & \text{if edge $j$ enters vertex $i$}\\
0 & \text{otherwise}
\end{cases}
\end{equation}
$$
Describe what the entries of the matrix product $BB^T$ represent, where $B^T$ is the transpose of $B.$
參考解答:
Let $A = BB^T = (a_{ij})$
$$
\begin{equation}
a_{ij} =
\begin{cases}
v_i \text{‘s } indeg() + outdeg() & i = j\\
-1 \times \text{edges between } v_i \text{ and } v_j & i \neq j
\end{cases}
\end{equation}
$$
3. (10%) The Fibonacci numbers are defined by recurrence
$F_0 = 0,$
$F_1 = 1,$
$F_i = F_{i-1} + F_{i-2}$ for $i \geq 2.$
Give an $O(n)$-time dynamic-programming algorithm to compute the nth Fibonacci number.
參考解答:
array f[0...n];
f[0] = 0;
f[1] = 1;
for i = 2 to n:
f[i] = f[i - 1] + f[i - 2];
return f[n];
題目(pdf):連結
有任何問題,或想要完整解釋的,歡迎在下方留言唷!
Jackson
您好,請問一下,Data Structure critical path 只有那兩條嗎 ?
我看 a2 → a4 → a7 → a12 → a14 也是 22 = 5 + 6 + 4 + 5 + 2
mt
這條也是,已經更正,感謝!